CCME: Code for simulation benchmarking
and real data analysis (“Lite” version)

John Palowitch
January 24, 2016

Email contact: palojj@unc.edu

1 Introduction

This file contains instructions for reproducing the analyses done in [3]. We
call this version the “Lite” version since we do not describe fully how to
customize and create different simulations than the ones found in the pub-
lication. We are working on a more extensive description of the simulation
framework and how to use it. The purpose of this document is simply to
allow a user to create, on his or her home computer, the results found in [3].

Note well that the folder (see http://stats. johnpalowitch.com/ccme)
comes with all results from all methods from all analyses in [3]. Thus if you
do not wish to recreate the all simulated data sets (which will probably take
about half a week and ~ 30 gigabytes of space) there are instructions in this
document you can skip. If you want to examine a particular simulation, or
a particular run on a real data set, all the seeds have been saved, so it’s a
matter of 1) deciding which simulation you want to inspect, 2) finding the
associated seed, and 3) understanding well enough how the simulations were
created (requires a careful reading of this document) to go to the specific
point in the appropriate script and re-create the network.

Throughout, we assume the reader has downloaded the project folder from
url. This folder should contain the directories airports, enron, methodFiles and

1


palojj@unc.edu
http://stats.johnpalowitch.com/ccme

sims, along with a number of .R scripts. When running R scripts (for any part
of this document), be sure that your working directory is set to the project
folder at all times.

2 Simulations (Section 5)

Within the folder sims are all scripts and subfolders to recreate the analyses
from Section 5. The general approach to both our code and the simulation
framework is the following. As the simulation framework has many param-
eters, we run many “experiments” in which one parameter is moved along a
grid of values, and the performance of each method is tested many times at
each value. The rough outline of the steps needed to accomplish this is as
follows:

1. Set up a parameter script to store the parameter settings for each
experiment. In principle all experiments are fully customizable with
these scripts, but this takes thorough knowledge of the functions used
to simulate the networks, which we do not discuss in this document.
We recommend the user leave these scripts as they were when they were
downloaded, as this is the only way to ensure exact reproducability of
the results in [3].

2. Set up a simulation script to call the parameter scripts and simu-
late /store the networks

3. Set up a method run script to run the methods

4. Set up an analysis script to record, store, and plot the performance of
each method

As some methods we analyzed are coded in languages other than R, some of
these scripts have lines to save batch files for the other methods. Along the
way we will introduce auxiliary scripts to obtain, store, and process results
from non-R methods.

2.1 Null Simulations (Section 5.8)

We begin with the “null” simulations presented in Section 5.8. This will
serve as practice for re-creating the rest of the simulated networks.



2.1.1 Making the networks

We performed only one experiment involving null networks, which makes this

example slightly simpler than others. The parameter script is sims/null_sims/make_par_lists.R,
but as mentioned previously, we do not discuss its use in this document.

With the parameter settings in hand, the next step is to make the sim-

ulated networks. This can be done on a home computer with the latest

version of R and at least 500mB of RAM. The script to make the file is
sims/null_sims/make_null_sims.R. Run this script with no options changed to

make and save the simulated networks.

2.1.2 Running the methods

For all simulations (including those described in the next section) we need
to run R methods (which include CCME), OSLOM [2] (which is coded in
C++), and SLPAw [4] (which is coded in Java). The analyses in [3] were
completed on a Windows desktop computer but the batch files for the latter
methods will run with any working implementation of those methods. We
leave it to the user to have (and henceforth assume that they have) installed
the most recent versions of these methods (the applications/sources are in
/methodFiles, but you can also get them yourself from the internet).

Running R methods. The script to run all the R methods on the null
network experiment is sims/sbm_sims/null_runs.R. In this script we separate
CCME from the other R methods by user options at the top of the script.
The user may run just CCME, all other R methods, or both at the same
time. These choices will not affect the results (providing no other options
have been changed).

Running OSLOM and SLPAw. These methods can be run by their
batch files:

e OSLOM: sims/null_sims/experimentl/OSLOM2/run_script.txt. To run
this script with the OSLOM software you must set the directory to the
folder in which the batch file is stored.

e SLPAw: sims/null_sims/experimentl/slpa_run_script.bat. This script can
be run from a Windows command line (providing SLPA is set up appro-
priately) or with another system as lines of input to the SLPA software.

The construction of the batch files ensures that the results will be saved in
the appropriate locations.



2.1.3 Plotting results from the methods

Extracting results from non-R methods. Before any analysis or plotting
is to be done, we must gather and store the results from non-R methods. This
can be done with the script sims/extract_all_.nonCCME.R. Important: this
script is shared between the null and non-null sims. When extracting null
results (as in this section), set the variable sbm to FALSE. Set run_expers to
the integer 1. The script can then be run as-is.

The results from all methods may be collected and plotted with the script
sims/null_sims/null_performancePlots.R. The scripts can be run as-is. The fig-
ures used in [3] will appear in sims/null_sims.

2.2 Community Simulations (Section 5 but not 5.8)

The simulation and analysis of community-structured networks proceeds sim-
ilarly to the steps outlined in the previous section, but there are some impor-
tant additions. For starters, there are 9 experiments instead of 1. To follow
the instructions in this section, you will need to download the associated
experiment folders and place them in the project folder. The 9 experiment
folders are split into two sets, available at the following urls:

http://stats.johnpalowitch.com/experimentsithrub.zip
http://stats. johnpalowitch.com/experiments6thru9.zip

Download and unzip these files. Place their contents in the directory sims/sbm_sims.
In what follows we discuss how to reproduce the simulation results presented
in all of Section 5 save for 5.8.

2.2.1 Why are the experiment folders so big, and already file-
laden?

For starters, you need the seeds that I used to generate the simulated data.
Secondly, it’s a bit of a tricky business getting the OSLOM directories set
up properly, and I didn’t want to explain that (or make you do it). Finally,
I decided to leave a number of “starting” files in case you want to skip some
steps below. If you don’t want to actually make all the simulation data (which
takes about 2 days if you run the experiments back-to-back, and makes the
project folder >30GB), you can start reading at Section m


http://stats.johnpalowitch.com/experiments1thru5.zip
http://stats.johnpalowitch.com/experiments6thru9.zip

2.2.2 Making the networks

For the community-structured networks, the files are created in two stages.
First, we create the .RData files that house the simulated data. Then we
save the data in formats amenable to OSLOM and SLPAw. (For the null

simulations these two stages were performed in one go.)

We performed 9 experiments involving community structured networks.
As before, there is a parameter script (sims/sbm_sims/make_par_lists.R) but
we do not discuss its use; its products are already stored in the downloaded
project folder. With the parameter settings in hand, the next step is to
make the simulated networks. This can be done on a home computer with
the latest version of R with the script sims/sbm_sims/make_sbm_sims.R. The
default behavior of the script (no user changes) is to make the experiment
files one-at-a-time. This will take multiple days. Depending on your com-
puter’s RAM capacity you may be able to run multiple windows of R at once.
In doing so you can modify the variable run_expers to set which experiments
to create in the window. Important: for this run of the script you must set
the variables writeOSLOM and writeScripts to FALSE. These are the defaults
for the variables as downloaded. No other options should be changed if you
wish to reproduce the results from [3] exactly.

Next, you must create the data files in formats amenable to OSLOM and
SLPAw. This involves another run of the script sims/sbm_sims/make_sbm_sims.R
but with some changes in the user variables:

1. Set runSBM to FALSE
2. Set writeOSLOM to TRUE
3. Set writeScripts toTRUE

This also creates the batch files for OSLOM and SLPAw.

2.2.3 Running the methods

For all simulations we need to run R methods (which include CCME), OSLOM
[2] (which is coded in C++), and SLPAw [4] (which is coded in Java). The
analyses in [3] were completed on a Windows desktop computer but the batch
files for the latter methods will run with any working implementation of those



methods (the applications/sources are in /methodFiles, but you can also get
them yourself from the internet).

Running R methods. The script to run all the R methods on the
community network experiments is sims/sbm_sims/run_R_methods.R. As be-
fore you may choose to run only igraph methods, only CCME, or both. You
may also choose to run just a portion of the experiments. This is helpful if
you want to run multiple windows of R at once. Running all experiments
back-to-back will take a few days (mostly due to CCME;, as it takes longer
than the igraph methods).

Running OSLOM and SLPAw. These methods can be run by their
batch files:

e OSLOM: sims/null_sims/experimentl/OSLOM2/run_script.txt. To run
this script with the OSLOM software you must set the directory to the
folder in which the batch file is stored.

e SLPAw: sims/null_sims/experimentl/slpa_run_script.bat. This script can
be run from a Windows command line (providing SLPA is set up appro-
priately) or with another system as lines of input to the SLPA software.

The construction of the batch files ensures that the results will be saved in
the appropriate locations.

2.2.4 Plotting results from the methods

Saving the community structure in .dat format. In [3] we judged
the accuracy of methods with the overlapping NMI metric [I]. This re-
quires saving both the true community structure of each network and the
output of each method in a special file format. The script to do this is
sims/sbm_sims/make_comm_dats.R. Run the script as downloaded; it will take
about 30-60min.

Calculating oNMI. To calculate the overlapping NMI metric for each
run of each method, you must use a special program developed by [I]. Both
the C++ source code and the application is stored in methodFiles/mutual3.
Important: do not use the authors’ version of the code for oNMI which
is downloadable from their website. We have modified the code to allow
for more flexible file management (i.e. the original version of the applica-
tion would not save the score in an arbitrary file location). To calculate



and save the oNMI for each method (on each simulation from each ex-
periment), first ensure that a working version of mutual3 (again, compiled
from our source code) is in /methodFiles in the project folder. Then run
sims/sbm_sims/all_mutual_calcs.txt from a command line capable of running
OSLOM (i.e. GNU or otherwise emulator).

Extracting results from non-R methods. Before any analysis or plot-
ting is to be done, we must gather and store the results from non-R methods.
This can be done with the script sims/extract_all_nonCCME.R. Important:
this script is shared between the null and non-null sims. When extracting
community results in this section, set the variable sbm to TRUE. Leave the
other variables as they were downloaded. The script can then be run as-is
and should take between 30minutes to and hour.

Procuring the tears of a sleeping leprechaun. Finally, before we
can calculate, plot, and save the results from the methods on the community-
structured network simulations, you must procure the tears of a sleeping lep-
rechaun. This can be difficult as leprechauns rarely have dreams distressing
enough to cry about while sleeping. You'll do best by looking for sleeping
leprechauns in dark or giant-spider-infested corners of the forest. Better yet,
find one with pink-eye: the tears don’t have to be from sadness or fear. Once
you have the tears, and being sure that they do not, at any time, receive
direct sunlight, bring them back to your computer. Smear the tears in the
shape of a shamrock on your computer screen, and whisper thrice “bestow
ye lucky charms”.

Plotting: Once you have completed all tasks described above, the results
from all methods may be collected and plotted with the script

sims/null_sims/null_performancePlots.R.

The scripts can be run as-is but will take about half a day. As before you
may expedite the process by running multiple windows with separate exper-
iments (altering the user variable plot_expers in each window) but this is not
recommended without above-usual RAM capacity. The figures used in [3]
will appear in sims/sbm_sims.

3 Real Data

In this section we describe the running of OSLOM, SLPAw, and CCME on
the two real data sets analyzed in [3]. The two data sets are the airports

7



data set and the ENRON data set.

3.1 Airports Data

All scripts to run the 3 methods on the aiports data are in the subfolder
airports. For maximal reproducibility, and as this is not a very big data set,
we describe everything from processing the raw data files to producing and
plotting the results from the methods. As in the previous section all major
scripts are in written in R and the working directory must be set to the
downloaded project folder.

3.1.1 Make the data

To construct usable network data from the raw data files, run the following
scripts in order:

1. airports/dataPrep.R
2. airports/rm_nodes_make_years.R

3. airports/save_Rdatas.R

3.1.2 Run the methods

First we’ll describe running CCME because the script to do so sets up the
runs for SLPAw and OSLOM. The script to run CCME is airports/R_method_run_script.R.
First ensure that the user variables about seeds are set to their (default)
FALSE, unless you want to see a run of the methods that is different from
the ones displayed in [3] (which is a perfectly reasonable thing to desire since
each method has a stochastic component). To make the OSLOM files set
writeOSLOM to TRUE but if you do not plan to run OSLOM later this is not
necessary. Otherwise the script will run as-is.

Next run SLPAw with the batch file airports/SLPA_run_script.txt, and
run OSLOM by running (with a GNU window set to the directory air-
ports/oslom/OSLOM2) the script airports/oslom/OSLOM2/aports.txt.

3.1.3 Compile SLPA and OSLOM results

To extract and save the community detection results from SLPA and OSLOM,
run the R script airports/nonCCME _airports/extract.R.

8



3.1.4 Plot results

Originally we were able to plot all results from all airport-data-years with
base R graphics. This can be done with the script airports/all_plots.R.

Next we used the ggplot2 package to plot some results. However a specific
way to enlarge the size of points on the map caused the script not to be
sourcable due most likely to some bug. Hence we included a script called
airports/all_plots_script_print.R to print out every run of the loop. This prints
out airports/all_plots_full_script.R which must be copied and pasted into an
R console. The script will not run sourced. This script saves results for the
data year 2015 only as otherwise the script would be far too long.

3.2 ENRON Data

This analysis was done from the project folder subdirectory /enron. The data
is already created and saved, so if you only wish to run the methods, ignore
the next section.

3.2.1 Creating the network data

The first step in completely duplicating the ENRON data analysis is to down-
load the data set from this url:

https://www.cs.cmu.edu/~./enron/enron_mail_20150507.tgz
If this link doesn’t work the following webpage should put you back on track:
https://www.cs.cmu.edu/~./enron/

Unzip the data and put the “top” folder with the 150 executive folders in
an accessible file location. Very important: the first script we run is en-
ron/mine_and_save.R. For this script, you must set your R session working
directory to the enron directory, not the overall project folder as we have
been doing. For all other scripts associated with this section, set your work-
ing directory to the overall project folder. In the script enron/mine_and_save.R
set the variable mailDir to a string with the name of the data folder. The
script will then run as-is and should take no more than a couple hours. Then
run makeDirectedList.R and enron/makeEdgelist.R in that order.


https://www.cs.cmu.edu/~./enron/enron_mail_20150507.tgz
https://www.cs.cmu.edu/~./enron/

3.2.2 Saving the data for OSLOM and SLPAw

The network must be saved for OSLOM as a .dat and for SLPAw .ipairs.
The data comes downloaded with the project folder; the OSLOM data is in
enron/OSLOM2/edge_list.dat and the SLPAw data is in enron/edge_list.ipairs.
If you want to re-create these files, write the variable in enron/edgelist.RData
to files with the aforementioned names, in the format in which they exist
(viewable with any text editor).

3.2.3 Running the methods
SLPAw can be run on the ENRON network with the batch file:
enron/SLPAw_edge list_runl _r0.1 v3_T100.icpm.

OSLOM can be run from a GNU command line. Study the ReadMe in
enron/OSLOM2 and run OSLOM with the -fast, -singleton, and -w options.
CCME can be run with the script enron/runScript.R.

3.2.4 Obtaining results

To read in, analyze, and output tables/plots for the methods’ results, run
the script enron/postAnalysis.R.

References

[1] A. Lancichinetti and S. Fortunato. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Physical Review F, 80(1):016118, 2009.

[2] A. Lancichinetti, F. Radicchi, J. J. Ramasco, S. Fortunato, et al. Finding
statistically significant communities in networks. PloS one, 6(4):e18961,
2011.

[3] J. Palowitch, S. Bhamidi, and A. Nobel. The continuous configuration
model: a null for community detection on weighted networks. 2016.

[4] J. Xie, B. K. Szymanski, and X. Liu. Slpa: Uncovering overlapping com-
munities in social networks via a speaker-listener interaction dynamic
process. In Data Mining Workshops (ICDMW), 2011 IEEE 11th Inter-
national Conference on, pages 344-349. IEEE, 2011.

10



	Introduction
	Simulations (Section 5)
	Null Simulations (Section 5.8)
	Making the networks
	Running the methods
	Plotting results from the methods

	Community Simulations (Section 5 but not 5.8)
	Why are the experiment folders so big, and already file-laden?
	Making the networks
	Running the methods
	Plotting results from the methods


	Real Data
	Airports Data
	Make the data
	Run the methods
	Compile SLPA and OSLOM results
	Plot results

	ENRON Data
	Creating the network data
	Saving the data for OSLOM and SLPAw
	Running the methods
	Obtaining results



